3.187 \(\int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=136 \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{4 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{4 \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (\cos (c+d x)+1)}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a \cos (c+d x)+a)^2} \]

[Out]

(-4*EllipticE[(c + d*x)/2, 2])/(a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (4*Sin[c + d*x])/(a^2*d*Sqr
t[Cos[c + d*x]]) - (5*Sin[c + d*x])/(3*a^2*d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])) - Sin[c + d*x]/(3*d*Sqrt[C
os[c + d*x]]*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.20795, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2766, 2978, 2748, 2636, 2639, 2641} \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{4 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{4 \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (\cos (c+d x)+1)}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2),x]

[Out]

(-4*EllipticE[(c + d*x)/2, 2])/(a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (4*Sin[c + d*x])/(a^2*d*Sqr
t[Cos[c + d*x]]) - (5*Sin[c + d*x])/(3*a^2*d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])) - Sin[c + d*x]/(3*d*Sqrt[C
os[c + d*x]]*(a + a*Cos[c + d*x])^2)

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx &=-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^2}+\frac{\int \frac{\frac{7 a}{2}-\frac{3}{2} a \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx}{3 a^2}\\ &=-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^2}+\frac{\int \frac{6 a^2-\frac{5}{2} a^2 \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{3 a^4}\\ &=-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac{5 \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}+\frac{2 \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{a^2}\\ &=-\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{4 \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac{2 \int \sqrt{\cos (c+d x)} \, dx}{a^2}\\ &=-\frac{4 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{4 \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}-\frac{5 \sin (c+d x)}{3 a^2 d \sqrt{\cos (c+d x)} (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 1.87504, size = 334, normalized size = 2.46 \[ \frac{\cos ^4\left (\frac{1}{2} (c+d x)\right ) \left (\frac{\csc \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}\right ) \left (29 \cos \left (\frac{1}{2} (c-d x)\right )+19 \cos \left (\frac{1}{2} (3 c+d x)\right )+31 \cos \left (\frac{1}{2} (c+3 d x)\right )+5 \cos \left (\frac{1}{2} (5 c+3 d x)\right )+12 \cos \left (\frac{1}{2} (3 c+5 d x)\right )\right ) \sec ^3\left (\frac{1}{2} (c+d x)\right )}{4 d \sqrt{\cos (c+d x)}}-\frac{4 i \sqrt{2} e^{-i (c+d x)} \left (12 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )-5 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+12 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{3 a^2 (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2),x]

[Out]

(Cos[(c + d*x)/2]^4*(((-4*I)*Sqrt[2]*(12*(1 + E^((2*I)*(c + d*x))) + 12*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(
c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^
((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + ((29*Cos[(c - d*x)/2] + 19*Cos[(3*c + d*x)/2] +
31*Cos[(c + 3*d*x)/2] + 5*Cos[(5*c + 3*d*x)/2] + 12*Cos[(3*c + 5*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^3
)/(4*d*Sqrt[Cos[c + d*x]])))/(3*a^2*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [B]  time = 2.519, size = 405, normalized size = 3. \begin{align*} -{\frac{1}{6\,{a}^{2}d} \left ( 2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( 5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) \cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( 5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) \cos \left ( 1/2\,dx+c/2 \right ) -48\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+86\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-37\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^2,x)

[Out]

-1/6*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2)))*cos(1/2*d*x+1/2*c)-48*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+86*(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-37*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\cos \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{4} + 2 \, a^{2} \cos \left (d x + c\right )^{3} + a^{2} \cos \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(a^2*cos(d*x + c)^4 + 2*a^2*cos(d*x + c)^3 + a^2*cos(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)